B.sc(mathH)part3 paper6 Topic:centre of a group

Definition: The set Z of all self conjugate elements of a group called the centre of G.

i.e., $Z = \{z \in G : zx = xz \ \forall \ x \in G\}.$

Theorem & The centre Z of a group G is a normal suggroup of G.

Proof: Centre Z of G is a sub group.

Let $z_1, z_2 \in Z$, then Z will be a sub group if $z_1 z_2^{-1} \in Z$.

If $z_1 \in Z \Rightarrow z_1 x = x z_1 \forall x \in G$

and $z_2 \in Z \Rightarrow z_2 x = x z_2 \forall x \in G$.

Now $z_2 x = x z_2 \Rightarrow z_2^{-1} (z_2 x) z_2^{-1} = z_2^{-1} (x z_2) z_2^{-1}$

 $\Rightarrow xz_2^{-1} = z_2^{-1} x \ \forall \ x \in G \Rightarrow z_2^{-1} \in Z.$

We shall now show that $z_1 z_2^{-1} \in \mathbb{Z}$.

 $x (z_1 z_2^{-1}) = (x z_1) z_2^{-1} = (z_1 x) (z_2^{-1}), \quad z_1 \in \mathbb{Z}$ $= z_1 (x z_2^{-1}) = z_1 (z_2^{-1} x), \quad z_2^{-1} \in \mathbb{Z}$ $= (z_1 z_2^{-1}) x.$

Since $x(z_1z_2^{-1}) = (z_1z_2^{-1}) x + x \in G$, it follows that $z_1z_2^{-1} \in Z$ whenever $z_1, z_2 \in Z$.

Hence Z is a sub group of G.

Z is a normal sub group.

Let $z \in Z \Rightarrow zx = xz + x \in G$.

 $x zx^{-1} = (xz) x^{-1} = (zx) x^{-1} = z \in \mathbb{Z}.$

 $z \in \mathbb{Z}, x \in G \Rightarrow xzx^1 \in \mathbb{Z}$

and hence by definition Z is a normal sub group.

Theorem o^{-3} . If Z be the centre of a group G and $a \in G$, then $a \in Z$ if $a \in G$ if $A \cap G$ is finite then $a \in Z$ if and only if $A \cap G$ is finite then $a \in Z$ if and only if $A \cap G$ is finite then $A \cap G$ if $A \cap G$ is finite then $A \cap G$ is finite.

Proof: $Z = \{z \in G : xz = zx + x \in Z\}$ $N(a) = \{x \in G : ax = xa\}.$

If $a \in \mathbb{Z}$ then $ax = xa + x \in G$.

Since for all $x \in G$ we have ax = xa. Therefore N(a) = G. On the other hand

The complete of the state of th

 $N(a) = G \Rightarrow ax = xa + x \in G$ $\Rightarrow a \in \mathbb{Z}$ Again if G be finite then,

$$N(a) = G \Leftrightarrow o(N(a)) = o(G).$$

Hence $a \in Z \Leftrightarrow N(a) = G \Leftrightarrow o(N(a)) = o(G)$.

Let Z be the centre of a group G. If $a \in \mathbb{Z}$ Theorem then prove that the cyclic sub group {a} of G generated by a is a normal sub group of G.

Proof: $Z = \{z \in G : z : x = xz \forall x \in G\}$ and $a \in Z$ so that $ax = xa \forall x \in G.$

Again $H = \{a\}$, therefore any element h of H is of the form a^n .

H is a normal sub group: Let x be any element of G, then $x h x^{-1} x = a^n x^{-1} = (x a x^{-1}) (x a x^{-1})....(x a x^{-1})$

$$=(x ax^{-1})^n = (a xx^{-1})^n$$
, by I

= $(a e)^n = a^n$ and hence it belongs to $H = \{a\}$.

Therefore $x h x^{-1} \in H + h \in H$ and $x \in G$ and hence H is a normal sub group of G.

Theorem * If $o(G) = p^n$ where p^n is a prime number then the centre $\dot{z} \neq \{e\}$.

Proof: We know N(a), $a \in G$ is a sub group of G and by Lagrange's Theorem o(N(a)) is divisors of the order of group G. Hence o(N(a)) is a divisor of p^n where p is prime and as such o(N(a)) is of the form p^n_a where n_a is an integer of the form $0 \le n_a \le n$.

Again know that
$$o(G) = p^n = \sum \frac{o(G)}{o(N(a))} = \sum \frac{p^n}{p^n_a}$$
 where $n_a \le n \dots (1)$

The summation is extended over one element a in each conjugate class.

Suppose there are exactly z elements in Z i.e. o(Z) = z.

Now $a \in Z \Leftrightarrow N(a) = G \Leftrightarrow o(N(a)) = o(G) \Leftrightarrow p^n_a = p^n \Leftrightarrow n_a = n$.

Hence there are exactly z elements in G such that

$$n_a = n \text{ i.e. } \frac{p^n}{p^n_a} = \frac{o(G)}{o(N)(a)} = 1.$$

Therefore the class equation (1) can be written as

$$p^n = z + \sum \frac{p^n}{p^n_a}$$
 = where $n_a < n$.

or,
$$z = p^n - \sum \frac{p^n}{p^n_a}$$
.

From above we observe that $p = 1$ in 1 in 2 in 2(2)

From above we observe that p is divisor of R.H.S. of (2) and hence p is a divisor of Z. Again as $e \in Z$ therefore $o(Z) = z \neq 0$ and as such z is a positive integer divisible by the prime p which implies that z > 1. Hence zmust contain an element in addition to e i.e., $z \neq \{e\}$.